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a b s t r a c t

Multiobjective discrete programming is a well-known family of
optimization problems with a large spectrum of applications. The
linear case has been tackled by many authors during the past
few years. However, the polynomial case has not been studied in
detail due to its theoretical and computational difficulties. This
paper presents an algebraic approach for solving these problems.
We propose a methodology based on transforming the polynomial
optimization problem to the problem of solving one or more
systems of polynomial equations andwe use certain Gröbner bases
to solve these systems. Different transformations give different
methodologies that are theoretically stated and compared by some
computational tests via the algorithms that they induce.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Amultiobjective polynomial program consists of a finite set of polynomial objective functions and
a finite set of polynomial constraints (in inequality or equation form), and solving that problemmeans
obtaining the set of minimal elements in the feasible region defined by the constraints with respect
to the partial order induced by the objective functions.

Polynomial programs have a wide spectrum of applications. Examples of them are capital
budgeting (Laughhunn, 1970), capacity planning (Bretthauer and Shetty, 1995), optimization
problems in graph theory (Beck and Teboulle, 2000), portfolio selection models with discrete
features (Beasley et al., 1995; Jobst et al., 2001) or chemical engineering (Ryoo and Sahinidis, 1995),
among many others. The reader is referred to Li and Sun (2006) for further applications.
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Polynomial programming generalizes linear and quadratic programming and can serve as a tool
to model engineering applications that are expressed by polynomial equations. Even those problems
with transcendental terms such as sin, log, and radicals can be reformulated bymeans of Taylor series
as a polynomial program. A survey of the publications on general nonlinear integer programming can
be found in Cooper (1981).

We study here multiobjective polynomial integer programs (MOPIP). Thus, we assume that the
feasible vectors have integer components and that there are more than one objective function to be
optimized. This change makes single objective and multiobjective problems to be treated in a totally
different manner, since the concept of solution is not the same.

In this paper, we introduce a new algebraic methodology for solving general MOPIP. The main fea-
ture of this approach is the use of Gröbner bases for obtaining the solutions of certain systems of dio-
phantine equations related to different optimality conditions of the multiobjective problem. Gröbner
bases were introduced by Bruno Buchberger in 1965 in his Ph.D. Thesis (Buchberger, 1965). He named
it Gröbner basis paying tribute to his advisor Wolfgang Gröbner. This theory emerged as a general-
ization, from the one variable case to the multivariate polynomial case, of the Euclidean algorithm,
Gaussian elimination and the Sylvester resultant. One of the outcomes of Gröbner Bases Theory was
its application to linear integer programming (Conti and Traverso, 1991; Hoşten and Sturmfels, 1995;
Thomas, 1998). Later, Blanco and Puerto (2009) introduced a new notion of partial Gröbner basis for
toric ideals in order to solve multiobjective linear integer programs. A different approach for solving
linear integer programs was developed by Bertsimas et al. (2000) based on the application of Gröbner
bases for solving systems of polynomial equations. This alternative use of Gröbner bases is also used in
the paper by Hägglöf et al. (1995) for solving continuous polynomial optimization problems. Further
details about Gröbner bases can be found in Cox et al. (2005, 2007). Actually, there are alternative alge-
braic methods, to the triangularization with lexicographic Gröbner bases, that also use Gröbner bases
for solving systems of polynomial equations like companion matrices or resultants Sturmfels (2002).
Moreover, nowadays there are othermethods, different from those based onGröbner, to solve systems
of polynomial equations such as for instance the ‘moment matrix’ by Lasserre (2008).

This paper describes different approaches for exactly solving MOPIP using Gröbner bases which
are based on reducing the problem to finding solutions of a system of polynomial equations induced
by optimality conditions: the necessary Karush–Kuhn–Tucker, the Fritz–John and the multiobjective
Fritz–John nondominance conditions.

Clearly, no actually efficient algorithm can be developed for the problem in the paper, unless P=NP.
Therefore, the goal of this paper is simply to present and theoretically justify different approaches that
can be used to exactly solveMOIP as an alternative to pure brute force (full enumeration). As a byprod-
uct our tools can be easily used as certificates of nondominance for any feasible solution of these prob-
lems. In general, no statement can be given on whether our methods improve upon full enumeration.
(Note that one can design examples where any feasible solution is nondominated.) Nevertheless, in
many cases, as shown in our computational tests, our methods need not enumerate all feasible so-
lutions. This is particular true under convexity assumptions since then, our optimality conditions are
not only necessary but also sufficient. In these cases, our approaches will fully enumerate all feasible
solutions only if they are all nondominated, and thus inmost cases solving the proposed equationswill
reduce significantly the complete enumeration. In fact, there are no generalmethodologies for solving
the multiobjective polynomial integer problem in the literature if no extra hypotheses are added to
the problem (linearity or convexity, among others). A few exact methods appear when the problems
have two objectives (Ralphs et al., 2006; Scholz, 2010). On the other hand, some heuristic procedures
have been proposed when the structure of the problem is fixed, i.e., quadratic assignment problems
(Knowles and Corne, 2002; Li and Landa-Silva, 2009) or quadratic knapsack problems (Vianna and
Arroyo, 2004). Further details can be found in Ehrgott and Gandibleux (2004) and Jahn (2004). In all
these cases, our tools can be used as certificates of nondominance for the solutions provided by the
heuristics. This can be done by replacing the values of the given feasible solution into the correspond-
ing system of polynomial equations and testing if they are compatible, i.e. if there are solutions on the
remaining variables that satisfy the system.

In this paper we have implemented our algorithms inMAPLE using standard libraries for obtaining
Gröbner bases. The only purpose of this implementationwas to compare the different approaches that
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wehave introduced. This simple implementation allowed us to solve problemswith several objectives
and up to 13 integer variables. Needless to say that better implementations that moreover use more
powerful tools for obtaining Gröbner bases would augment the size of the instances solved by our
algorithms.

The paper is structured as follows. In the next sectionwe give some preliminaries inmultiobjective
polynomial integer optimization. We present in Section 3 our first algorithm for solving MOPIP
using only the triangularization property of lexicographic Gröbner bases. Section 4 is devoted to two
different algorithms for solving MOPIP using a Chebyshev like scalarization and the Karush–Kuhn–
Tucker or the Fritz–John optimality conditions. The last algorithm, based on the multiobjective Fritz–
John optimality condition, is described in Section 5. In Section 6, we compare the algorithms with
the results of some computational experiments and its analysis. Finally, in Section 7 we draw some
conclusions about the contributions of this paper and further research.

2. The multiobjective integer polynomial problem

The goal of this paper is to the solve multiobjective polynomial integer programs (MOPIP):

min (f1(x), . . . , fk(x))
s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s
x ∈ Zn

+

(MOPIPf,g,h)

with f1, . . . , fk, g1, . . . , gm, h1, . . . , hs polynomials in R[x1, . . . , xn] and the constraints defining a
bounded feasible region. Therefore, from now on we deal with MOPIPf,g,h and we denote f = (f1,
. . . , fk), g = (g1, . . . , gm) and h = (h1, . . . , hr). If the problem had no equality (resp. inequality)
constraints, we would denote it byMOPIPf,g (resp.MOPIPf,h), avoiding the nonexistent term.

However, (MOPIPf,g,h) can be transformed to an equivalent multiobjective polynomial binary
problem. Since the feasible region {x ∈ Rn

+
: gj(x) ≤ 0, hr(x) = 0, j = 1, . . . ,m, r = 1, . . . , s}

is assumed to be bounded, it can be always embedded in a hypercube
∏n

i=1[0, ui]
n. Then, every

component in x, xi, has an additional, but redundant, constraint xi ≤ ui. We write xi in binary form,
introducing new binary variables zij with values in {0, 1}, xi =

∑⌊log ui⌋
j=0 2j zij, substituting every xi in

(MOPIPf,g,h) we obtain an equivalent 0–1 problem.
Then, from now on, without loss of generality, we restrict ourselves to multiobjective polynomial

binary programs (MOPBP) in the form:

min (f1(x), . . . , fk(x))
s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s
x ∈ {0, 1}n.

(MOPBPf,g,h)

If the problem had no equality (resp. inequality) constraints, we would denote the problem by
MOPBPf,g (resp.MOPBPf,h), avoiding the nonexistent term.

Clearly, the number of solutions of the above problem is finite, since the decision space is finite.
It is clear that MOPBPf,g,h is not a standard optimization problem since the objective function is

a k-coordinate vector, thus inducing a partial order among its feasible solutions. Hence, solving the
above problem requires an alternative concept of solution, namely the set of nondominated (or Pareto
optimal) points.

A feasible vectorx ∈ Rn is said to be a nondominated (or Pareto optimal) solution of MOPIPf,g if
there is no other feasible vector y such that

fj(y) ≤ fj(x) ∀j = 1, . . . , k

with at least one strict inequality for some j. If x is a nondominated solution, the vector f(x) = (f1
(x), . . . , fk(x)) ∈ Rk is called efficient.

We say that a feasible solution, y, is dominated by a feasible solution, x, if fi(x) ≤ fi(y) for all
i = 1, . . . , k and f(x) ≠ f(y). We denote by XE the set of all nondominated solutions for (MOPBPf,g,h)
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and by YE the image under the objective functions of XE , that is, YE = {f(x) : x ∈ XE}. Note that XE is a
subset of Rn (decision space) and YE is a subset of Rk (space of objectives).

From the objective functions f = (f1, . . . , fk), we obtain a partial order on Zn as follows:

x ≺f y :⇐⇒ f(x) � f(y) or x = y.

Note that since f : Rn
→ Rk, the above relation is not complete. Hence, there may exist incomparable

vectors.
In the following sectionswe describe some algorithms for solvingMOPIP using tools from algebraic

geometry. In particular, in each of these methods, we transform our problem in a certain system of
polynomial equations, and we use Gröbner bases to solve it.

3. Obtaining nondominated solutions by solving systems of polynomial equations

In this section we present the first approach for solving multiobjective polynomial integer
programs using Gröbner bases. For this method, we transform the program in a system of polynomial
equations that encodes the set of feasible solutions and its objective values. Solving that system in the
objective values, and then, selecting the minimal ones in the partial componentwise order, allows us
to obtain the associate feasible vectors, thus, the nondominated solutions.

Through this sectionwe solveMOPBPf,h. Without loss of generality, we reduce the general problem
to the problem without inequality constraints since we can transform inequality constraints to
equality constraints as follows:

g(x) ≤ 0 ⇐⇒ g(x) + z2 = 0, z ∈ R, (1)

where the quadratic term, z2, assures the nonnegativity of the slack variable and then, less than or
equal to type inequality. Initially, we suppose that all the variables are binary. In Remark 3.1 we
describe how to modify the algorithm to incorporate the above slack variables.

This approach consists of transformingMOPBPf,h to an equivalent problem such that the objective
functions are part of the constraints. For this transformation, we add k new variables, y1, . . . , yk to the
problem, encoding the objective values for all feasible solutions. The modified problem is:

min (y1, . . . , yk)
s.t. hr(x) = 0 r = 1, . . . , s

yj − fj(x) = 0 j = 1, . . . , k
xi(xi − 1) = 0 i = 1, . . . , n

y ∈ Rk x ∈ Rn

(2)

where integrality constraints are encoded as quadratic constraints so, MOPBPf,h is a polynomial
continuous problem.

The algorithm consists of, first, obtaining the set of feasible solutions of Problem (2) in the
y-variables; then, selecting from that set those solutions that are minimal with respect to the
componentwise order, obtaining the set of efficient solutions of MOPBPf,h. The feasible solutions in
the x-variables associated to those efficient solutions correspond with the nondominated solutions of
MOPBPf,h.

For the sake of completeness and to enhance readability, for readers from the optimization field
and nonspecialist in algebraic geometry, we describe a procedure for solving the systemof polynomial
equations that encodes the feasible region of Problem (2), i.e. the solutions of

hr(x) = 0 for all r = 1, . . . , s
yj − fj(x) = 0 for all j = 1, . . . , k
xi(xi − 1) = 0 for all i = 1, . . . , n.

(3)

In order to analyze System (3) we use Gröbner bases as a tool for solving systems of polynomial
equations. Further details can be found in the book by Sturmfels (2002). Clearly, any method for
solving these kinds of systems could be used, in particular, the recentmethodology by Lasserre (2008),
as well as resultants, companion matrices or Gröbner bases with different elimination orderings.
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The set of solutions of (3) coincides with the affine variety of the following polynomial ideal in
R[y1, . . . , yk, x1, . . . , xn]:

I = ⟨h1(x), . . . , hm(x), y1 − f1(x), . . . , yk − fk(x), x1(x1 − 1), . . . , xn(xn − 1)⟩.

Note that I is a zero-dimensional ideal since the number of solutions of the equations that define I is
finite. Let V (I) denote the affine variety of I . If we restrict I to the family of variables x (resp. y) the
variety V (I ∩R[x1, . . . , xn]) (resp. V (I ∩R[y1, . . . , yk])) encodes the set of feasible solutions (resp. the
set of possible objective values) for that problem.

Applying the elimination property, the reduced Gröbner basis for I , G, with respect to the
lexicographical ordering with yk ≺ · · · ≺ y1 ≺ xn ≺ · · · ≺ x1 gives us a method for solving system
(3) sequentially, i.e., solving in one indeterminate at a time. Explicitly, the shape of G is:

(1) G contains one polynomial in R[yk]: pk(yk)
(2) G contains one or several polynomials in R[yk−1, yk] : p1k−1(yk−1, yk), . . . , p

mk−1
k−1 (yk−1, yk).

...
(k + 1) G contains one or several polynomials in R[xn, y1, . . . , yk] : q1n(xn, y), . . . , q

sn
n (xn, y).

...
(k + n) G contains one or several polynomials inR[xn, y1, . . . , yk] : q11(x1, . . . , xn, y), . . . , q

s1
n (x1, . . . ,

xn, y).

Then, with this structure of G, we can solve, in a first step, the system in the y-variables using those
polynomials inG that only involve this family of variables as follows:we first solve for yk in pk(yk) = 0,
obtaining the solutions: y1k, y

2
k, . . .. Then, for fixed yrk, we find the common roots of p1k−1, p

2
k−1, . . .

getting solutions y1k−1,r , y
2
k−1,r , . . . and so on, until we have obtained the roots for p1(y1, . . . , yk). Note

that at each step we only solve one variable polynomial equations.
We denote by Ω the above set of solutions in vector form

Ω = {(ŷ1, . . . , ŷk) : pk(ŷk) = 0, p1k−1(ŷk−1, ŷk) = 0, . . . , pmk−1
k−1 (ŷk−1, ŷk) = 0, . . .

p11(ŷ1, ŷ2, . . . , ŷk) = 0, . . . , pm1
1 (ŷ1, ŷ2, . . . , ŷk) = 0}.

Aswe stated above,Ω is the set of all possible values of the objective functions at the feasible solutions
of MOPBPf,h. We are looking for the nondominated solutions that are associated with the efficient
solutions. From Ω , we can select the efficient solutions as those that are minimal with respect to the
componentwise order in Rk. So, we can extract from Ω the set of efficient solutions, YE :

YE = {(y∗

1, . . . , y
∗

k) ∈ Ω :̸ ∃(y′

1, . . . , y
′

k) ∈ Ω with y′

j ≤ y∗

j for

j = 1, . . . , k and (y′

1, . . . , y
′

k) ≠ (y∗

1, . . . , y
∗

k)}.

Once we have obtained the solutions in the y-variables that are efficient solutions for MOPBPf,h, we
compute with an analogous procedure the nondominated solutions associated to the y-values in YE . It
consists of solving the triangular system given by G for the polynomial where the x-variables appear
once the values for the y-variables are fixed to be each of the vectors in YE .

A pseudocode for this procedure is described in Algorithm 1.

Theorem 3.1. Algorithm 1 either provides all nondominated and efficient solutions or provides a
certificate of infeasibility whenever G = {1}.

Proof. Suppose that G ≠ {1}. Then, Gy
k−1 has exactly one element, namely p(yk). This follows from

the observation that I ∩ R[yk] is a polynomial ideal in one variable, and therefore, needs only one
generator.

Solving p(yk) = 0 we obtain every ŷk ∈ V (Gy
k−1). Sequentially we obtain ŷk−1 extending ŷk to the

partial solutions (ŷk−1, ŷk) in V (Gy
k−1) and so on.

By the Extension Theorem, this is always possible in our case.
Continuing in this way and applying the Extension Theorem, we can obtain all solutions

(ŷ1, . . . , ŷk) in V (G ∩ R[y1, . . . , yk]. These vectors are all the possible objective values for all feasible
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Algorithm 1: Solving MOPIP by solving systems of polynomial equations
Input : f1, . . . , fk, h1, . . . hs ∈ R[x1, . . . , xn]
Initialization: I = ⟨f1 − y1, . . . , fk − yk, h1, . . . , hs, x1(x1 − 1), . . . , xn(xn − 1)⟩.
Algorithm:
Step 1. Compute a Gröbner basis, G, for I with respect to a lexicographic order with

yk ≺ · · · ≺ y1 ≺ xn ≺ · · · ≺ x1.
Step 2. Let Gy

l = G ∩ R[yl+1, . . . , yk] be a Gröbner basis for Iyl = I ∩ R[yl+1, . . . , yk], for
l = 0, . . . , k − 1. (By the Elimination Property).

1. Find all ŷk ∈ V (Gy
k−1).

2. Extend every ŷk to (ŷk−1, ŷk) ∈ V (Gy
k−2).

...
(k − 1) Extend every (ŷ3, . . . , ŷk) to (ŷ2, ŷ3, . . . , ŷk) ∈ V (Gy

1).
(k) Find all ŷ1 such that (ŷ1, . . . , ŷk) ∈ V (Gy

0).
Step 3. Select from V (Gy

0) the minimal vectors with respect to the usual componentwise order
in Rk. Set YE this subset.

Step 4. Let Gl = G ∩ R[y1, . . . , yk, xl+1, . . . , xn] be a Gröbner basis for Il ∩ R[y1, . . . , yk,
xl+1, . . . , xn], for l = 0, . . . , n − 1. (By the Elimination Property). Denote by
Sl = {(ŷ1, . . . , ŷk, x̂l+1, . . . , x̂n) : (ŷ1, . . . , ŷk) ∈ YE,
and exists (x1, . . . , xl) such that (x1, . . . , xn) is feasible} for l = 0, . . . , n − 1.

1. Find all x̂n such that (ŷ1, . . . , ŷk, x̂n) ∈ V (Gn−1) ∩ Sn−1.
2. Extend every x̂n to ((ŷ1, . . . , ŷk, x̂n−1, x̂n) ∈ V (Gn−2) ∩ Sn−2.
...

(n − 1) Extend every (ŷ1, . . . , ŷk, x̂3, . . . , x̂n) to (ŷ1, . . . , ŷk, x̂2, x̂3, . . . , xn) ∈ V (G1)
∩ S1.

(n) Find all x̂1 such that (ŷ1, . . . , ŷk, x̂1, . . . , x̂n) ∈ V (G0) ∩ S0.
Set XE = πx(V (G0) ∩ S0), where πx denotes the projection over the x-variables.

Output: YE the set of efficient solutions and XE the set of nondominated solutions forMOPBPf,h.

solutions of the problem. Selecting from V (G∩ R[y1, . . . , yk]) those solutions that are not dominated
in the componentwise order in Rk, we obtain YE .

Following a similar scheme in the x-variables, we have the set V (G0) ∩ S∗

0 encoding all efficient (in
the first k coordinates) and nondominated (in the last n coordinates) solutions.

Finally, if G = {1}, then, the ideal I coincides with R[y1, . . . , yk, x1, . . . , xn], indicating that V (I)
is empty (it is the set of the common roots of all polynomials in R[y1, . . . , yk, x1, . . . , xn]). Then, we
have an infeasible integer problem. �

Remark 3.1. In the case where we add slack variables, as explained in (1), we slightly modify the
above algorithm solving first in the slack variables and selecting those solutions that are real numbers.
Then we continue with the procedure as described in Algorithm 1.

The following example illustrates how Algorithm 1 works. In this case, the feasible region has two
different connected components and one of these components is not convex.

Example 3.1. Consider the following biobjective polynomial integer problem.

min (f1(x1, x2), f2(x1, x2)) = (x21 − x2, x1 − x22)
s.t.

g1(x1, x2) = x2 − x41 + 10x31 − 30x21 + 25x1 − 7 ≥ 0
g2(x1, x2) = x2 − x31 + 9x21 − 25x1 + 12 ≤ 0

x1, x2 ∈ Z+.

(4)

The feasible region for this problem is shown in Fig. 1.
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Fig. 1. Feasible region of Example 3.1.

To solve the problem using Algorithm 1, first we need to transform it to a binary problem
with equality constraints. For the first task, we substitute each variable, x1 and x2 by their binary
expressions, taking into account that x1 is bounded from above by 6 and x2 by 15 (and then, we need
⌈log2 6⌉ + 1 = 4 and ⌈log2 15⌉ + 1 = 5 auxiliary z-variables to express x1 and x2 in binary code,
respectively). For the second task, we add to the problem two new variables w1 and w2. Then, the
problem is equivalent to the followingmultiobjective problem. After the change of variables, Problem
(4) is re-written as:

min (y1, y2)
s.t.

g1(z11, z12, z13, z14, z21, z22, z23, z24, z25) − w2
1 = 0

g2(z11, z12, z13, z14, z21, z22, z23, z24, z25) + w2
2 = 0

y1 − f1(z11, z12, z13, z14, z21, z22, z23, z24, z25) = 0
y2 − f2(z11, z12, z13, z14, z21, z22, z23, z24, z25) = 0

z2ij − zij = 0
zij, wk, yl ∈ R.

Now, we compute the reduced Gröbner basis for the set of polynomials that define the feasible region
of the above problemwith respect to the lexicographic ordering such that z ≻ y ≻ w. RunningMAPLE
11 using the package Groebner and the procedure Solve, we compute the following 16 solutions
for the y-variables:

(y1, y2) ∈ {(16, −76), (9, −45), (17, −59), (14, −116), (11, −21), (13, −139), (−3, −15),
(13, −5), (−2, −8), (12, −12), (12, −164), (15, −95), (10, −32),
(18, −44), (8, −60), (−4, −24)}.

The minimal elements (with respect to the componentwise ordering in R2) are:

YE = {(12, −164), (8, −60), (−4, −24)},

whose values in the z-variables are:

ZE = {(0, 0, 1, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0, 1, 0, 0), (1, 0, 1, 0, 1, 0, 1, 1, 0)},

and translating to values in the original x-variables we have that the set of nondominated solutions
for the problem is:

XE = {(4, 8), (5, 13), (1, 5)}.
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Fig. 2. Feasible region, the nondominated solutions and the level curves of Example 3.1.

Fig. 2 shows these solutions in the feasible region of the problem and the level curves of both objective
functions at each of these solutions.

4. Obtaining nondominated solutions by the Chebyshev norm approach

In this sectionwedescribe two additionalmethods for solvingMOPIP based on a different rationale,
namely scalarizing themultiobjective problem and solving it as a parametric single objective problem.
We propose a methodology based on the application of optimality conditions to a family of single
objective problems related to our original multiobjective problem. The methods consist of two main
steps: a first step where the multiobjective problem is scalarized to a family of single objective
problems such that each nondominated solution is an optimal solution for at least one of the single
objective problems in that family; and a second step that consists of applying necessary optimality
conditions to each one of the problems in the family, to obtain their optimal solutions. Those solutions
are only candidates to be nondominated solutions of the multiobjective problem since we just use
necessary conditions.

For the first step, the scalarization, we use a weighted Chebyshev norm approach. Other weighted
sum approaches could be used to transform the multiobjective problem to a family of single
objective problems whose set of solutions contains the set of nondominated solutions of our
problem. However, the Chebyshev approach seems to be rather adequate since it does not require
to impose extra hypothesis to the problem. This approach can be improved for problems satisfying
convexity conditions,where alternativewell-known results can be applied (see Jahn (2004) for further
details).

For the second step, we use the Fritz–John and Karush–Kuhn–Tucker necessary optimality
conditions, giving us two different approaches. In this section we describe both methodologies since
each of them has its own advantages over the other.

For applying the Chebyshev norm scalarization, we use the following result that states how to
transform our problem to a family of single objective problems, and how to obtain nondominated
solutions from the optimal solution of those single objective problems. Further details and proofs of
this result can be found in Jahn (2004).

Theorem 4.1 (Corollary 11.21 in Jahn, 2004). Let (MOPBPf,g,h) be feasible. x∗ is a nondominated solution
of (MOPBPf,g,h) if and only if there are positive real numbers ω1, . . . , ωk > 0 such that x∗ is an image
unique solution of the following weighted Chebyshev approximation problem:



V. Blanco, J. Puerto / Journal of Symbolic Computation 46 (2011) 511–533 519

min γ
s.t. ωi (fi(x) − ŷi) − γ ≤ 0 i = 1, . . . , k

gj(x) ≤ 0 j = 1, . . . ,m
hr(x) = 0 r = 1, . . . , s

xi(xi − 1) = 0 i = 1, . . . , n
γ ∈ R x ∈ Rn

(Pω)

where ŷ = (ŷ1, . . . , ŷk) ∈ Rk is a lower bound of f = (f1, . . . , fk), i.e., ŷi ≤ fi(x) for all feasible solution x
and i = 1, . . . , k.

According to the above result, every nondominated solution of (MOPBPf,g,h) is the unique solution
of (Pω) for some ω > 0. We apply, in the second step, necessary optimality conditions for obtaining
the optimal solutions for those problems (taking ω as parameters). These solutions are candidates to
be nondominated solutions of our original problem. Actually, every nondominated solution is among
those candidates.

In the following subsections we describe the above mentioned two methodologies for obtaining
the optimal solutions for the scalarized problems (Pω) for each ω.

4.1. The Chebyshev–Karush–Kuhn–Tucker approach

The first optimality conditions that we apply are the Karush–Kuhn–Tucker (KKT) necessary
optimality conditions, that were stated, for the general case, as follows (see e.g. Bazaraa et al. (1993)
for further details):

Theorem 4.2 (KKT Necessary Conditions). Consider the problem:

min f (x)
s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s
x ∈ Rn.

(5)

Let x∗ be a feasible solution, and let J = {j : gj(x∗) = 0}. Suppose that f and gj, for j = 1, . . . ,m, are
differentiable at x∗, that gj, for j ∉ J , is continuous at x∗,and that hr , for r = 1, . . . , s, is continuously
differentiable at x∗. Further suppose that ∇gj(x∗), for j ∈ I , and ∇hr(x∗), for r = 1, . . . , s, are linearly
independent (regularity conditions). If x∗ solves Problem (5) locally, then there exist scalars λj, for j =

1, . . . ,m, and µr , for r = 1, . . . , s, such that

∇f (x∗) +

m−
j=1

λj ∇gj(x∗) +

s−
r=1

µr ∇hr(x∗) = 0

λj gj(x∗) = 0 for j = 1, . . . ,m
λj ≥ 0 for j = 1, . . . ,m.

(KKT)

From the above theorem the candidates to be optimal solutions for Problem (5) are those that either
satisfy the KKT conditions (in the casewhere all the functions involved in Problem (5) are polynomials,
this is a system of polynomial equations) or do not satisfy the regularity conditions. Note that these
two sets are, in general, not disjoint.

Regularity conditions can also be formulated as a system of polynomial equations when the
involved functions are all polynomials. Let x∗ be a feasible solution for Problem (5), x∗ does not verify
the regularity conditions if there exist scalars λj, for j ∈ J , and µr , for r = 1, . . . , s, not all equal to
zero, such that:−

j∈I

λj∇gj +
s−

r=1

µr∇hr = 0. (Non-Regularity)

The above discussion justifies the following result.
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Corollary 4.1. Let x∗ be a nondominated solution for (MOPBPf,g,h). Then, x∗ is a solution of the systems of
polynomial equations (6) or (7), for some ω > 0.

1 −

k−
i=1

νi = 0

k−
i=1

νiωi ∇fi(x) +

m−
j=1

λj∇gj(x) +

s−
r=1

µj∇hr(x) +

n−
i=1

βiei (2xi − 1) = 0

νi(ωi (fi(x) − ŷi) − γ ) = 0, i = 1, . . . , k
λj gj(x) = 0, for j = 1, . . . ,m


(6)

with x ∈ Rn such that gj(x) ≤ 0, for j = 1, . . . ,m, hr(x) = 0, for r = 1, . . . , s and for some λj ≥ 0,
for j = 1, . . . ,m, νi ≥ 0, for i = 1, . . . , k and ei is the ith unit vector in the standard basis of Rn, for
i = 1, . . . , k.

k−
i=1

νi = 0

k−
i=1

νiωi ∇fi(x) +

m−
j=1

λj∇gj(x) +

s−
r=1

µj∇hr(x) +

n−
i=1

βiei (2xi − 1) = 0

ωi (fi(x) − ŷi) − γ ≤ 0, i = 1, . . . , k


(7)

with x ∈ Rn such that gj(x) ≤ 0, for j = 1, . . . ,m, hr(x) = 0, for r = 1, . . . , s and for some λj ≥ 0, for
j = 1, . . . ,m, and νi ≥ 0, for i = 1, . . . , k with (λ, µ, ν, β) ≠ 0.

Let XKKT
E denote the set of solutions, in the x-variables, of system (6) and let XNR

E denote the set of
solutions, in the x-variables, of system (7) (the problem is solved by avoiding inequality constraints,
then every solution is evaluated to check if it satisfies the inequality constraints).

For solving these systems (Chebyshev–KKT and Non-Regularity), we use a Gröbner basis approach.
Let I be the ideal generated by the involved equations.

Let us consider a lexicographical order over the monomials in R[x, γ , λ, ν, µ, β] such that x ≺

γ ≺ λ ≺ ν ≺ µ ≺ β . Then, the Gröbner basis, G, for I with this order has the following triangular
shape:

• G contains one polynomial in R[xn]: pn(xn)
• G contains one or several polynomials in R[xn−1, xn] : p1n−1(xn−1, xn), . . . , p

m1
n−1(xn−1, xn).

...
• G contains one or several polynomials in R[x] : p11(x1, . . . , xn), . . . , p

mn
1 (x1, . . . , xn).

• The remaining polynomials involve variables x and at least one γ , λ, µ, ν or β .

We are interested in finding only the values for the x-variables, so, we avoid the polynomials in
G that involve any of the other auxiliary variables. In general, we are not able to discuss about the
values of the parameters γ , λ, µ, ν and β . Needless to say that in those cases when we can do it,
some values of x may be discarded, simplifying the process. We denote by Gx the subset of G that
contains only polynomials in the x-variables. By the Extension Theorem, Gx is a Gröbner basis for
I ∩ R[x1, . . . , xn].

Solving the system given by Gx and checking the feasibility of those solutions, we obtain as
solutions those of our KKT or Non-Regularity original systems.

It is clear that the set of nondominated solutions of our problem is a subset of XKKT
E ∪ XNR

E , since
either a solution is regular, and then, KKT conditions are applicable or it satisfies the Non-Regularity
conditions. However, the set XKKT

E ∪ XNR
E may contain dominated solutions, so, at the end we must

remove the dominated ones to get only XE .
The steps to solve Problem (MOPBPf,g,h) using the Chebyshev–KKT approach are summarized in

Algorithm 2.

Theorem 4.3. Algorithm 2 solves Problem (MOPBPf,g,h) in a finite number of steps.
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Algorithm 2: Summary of the procedure for solving MOPBP using Chebyshev–KKT approach.
Input : f1, . . . , fk, g1, . . . gm, h1, . . . , hr ∈ R[x1, . . . , xn]
Algorithm:
Step 1 Formulate the Chebyshev scalarization of (MOPBPf,g,h). (Problem (Pω))
Step 2 Solve System (6) in the x-variables: XKKT

E .
Step 3 Solve System (7) in the x-variables: XNR

E .
Step 4 Remove from XKKT

E ∪ XNR
E the subset of dominated solutions: XE .

Output: XE the set of nondominated solutions for (MOPBPf,g,h)

The following example illustrates how the above the algorithm works.

Example 4.1. Consider the following biobjective problem:

min (−5x1 + 8x2 + 5x1x2, 4x1 + 2x1x2)
s.t. −x1 + x31 + x42 ≥ 0

x1, x2 ∈ {0, 1, 2}.

The Chebyshev scalarization of this problem is:

min γ
s.t. ω1 (−5x1 + 8x2 + 5x1x2 − (−5)) − γ ≤ 0

ω2 (4x1 + 2x1x2 − (0)) − γ ≤ 0
32 x1 − 32 x31 − (2x2 + 1)4 ≤ 0
γ , ω1, ω2 ∈ R, x1, x2 ∈ {0, 1, 2}.

Then, the KKT system is the one given below (after transforming the constraints xi ∈ {0, 1, 2} in
xi (xi − 1) (xi − 2) = 0)

β1 (3 x21 − 6x1 + 2) + ν1 ω1 (−5 + 5 x2) + ν2 ω2 (4 + 2 x2) − λ1 (32 − 96 x21) = 0
β2 (3 x22 − 6x2 + 2) + ν1 ω1 (8 + 5 x1) + 2 ν2 ω2 x1 + 8 λ1 (2x2 + 1)3 = 0

1 − ν1 − ν2 = 0
x31 − 3x21 + 2x1 = 0
x32 − 3x22 + 2x2 = 0

λ1 (32 x1 − 32 x31 − (2x2 + 1)4) = 0
ν1 (ω1 (−5 x1 + 8 x2 + 5 x1 x2 + 5) − γ ) = 0

ν2 (ω2 (4 x1 + 2 x1 x2) − γ ) = 0.

We solve this system sequentially using a Gröbner basis with respect to a lexicographic ordering with
ν ≺ λ ≺ x ≺ γ ≺ β .

Sequentially we can solve the above system (the one given by the Gröbner basis). Then, discarding
solutions (taking into account that λ1, λ2, µ1, µ2, ν ≥ 0 and ω1, ω2 > 0 and also the requirements of
Theorem 4.1), we have as possible nondominated solutions in the x-variables:

{(1, 2), (2, 0), (0, 0), (1, 0), (2, 1)}.

Note that the solutions (0, 1) and (1, 1) are discarded since they do not fulfill the requirement of
Theorem 4.1. The reader can check that in all tuples where these solutions appear there exists another
tuple in another solution having the same image solution in Problem (Pω), and then being not unique.
For instance, the solutions {x1 = 1, x2 = 1, γ = 13ω1, ω1, ω2, ν1 = 1, ν2 = 0, λ1 = 0, β1 =

−13ω1, β2 = 0} and {x1 = 0, x2 = 1, γ = 13ω1, ω1, ω2, µ1 = 1, µ2 = 0, λ1 = 0, β1 =

−8ω1, β2 = 0} are not considered since for any pair ω1, ω2 > 0, the feasible solutions (1, 1) and
(0, 1) are both optimal solutions for Problem (Pω). Finally, we point out that the solution (0, 2) is not
considered since it only appears as a non-unique optimal solution of Problem Pω . (Note that one of
the tuples with x1 = 0 and x2 = 0 is also an optimal solution for the same problem.)

Now, the Non-Regularity system is:
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Fig. 3. Feasible region, the nondominated solutions and the level curves of Example 4.1.

β1 (3 x21 − 6x1 + 2) + ν1 ω1 (−5 + 5 x2) + ν2 ω2 (4 + 2 x2) − λ1 (32 − 96 x21) = 0
β2 (3 x22 − 6x2 + 2) + ν1 ω1 (8 + 5 x1) + 2 ν2 ω2 x1 + 8 λ1 (2x2 + 1)3 = 0

ν1 + ν2 = 0
x31 − 3x21 + 2x1 = 0
x32 − 3x22 + 2x2 = 0

λ1 (32 x1 − 32 x31 − (2x2 + 1)4) = 0
ω1 (−5 x1 + 8 x2 + 5 x1 x2 + 5) − γ = 0

ω2 (4 x1 + 2 x1 x2) − γ = 0.

The set of solutions projected in the x is the whole set of feasible solutions.
Then, the candidate set of possible solutions of our problem is the set of non-regular solutions

fulfilling the requirements of Theorem 4.1:

{(2, 2), (2, 0), (0, 0), (1, 0), (2, 1)}.

Discarding dominated solutions, the solution set for this example is:

{(2, 0), (0, 0), (1, 0)}.

Fig. 3 shows the feasible region, the nondominated solutions and the level curves for each of them
in this example.

4.2. The Chebyshev–Fritz–John approach

Analogously to the previous approach, oncewehave scalarized the originalmultiobjective problem
to a family of single objective problems, in this section we apply the Fritz–John (FJ) conditions to all
the problems in this family. The followingwell-known result justifies the use of FJ conditions to obtain
candidates to optimal solutions for single objective problems. Proofs and further details can be found
in Bazaraa et al. (1993).

Theorem 4.4 (FJ Necessary Conditions). Consider the problem:

min f (x)
s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s
x ∈ Rn.

(8)
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Let x∗ be a feasible solution, and let J = {j : gj(x∗) = 0}. Suppose that f and gj, for j = 1, . . . ,m, are
differentiable at x∗, and that hr , for r = 1, . . . , s, is continuously differentiable at x∗. If x∗ locally solves
Problem (8), then there exist scalars λj, for j = 1, . . . ,m, and µr , for r = 1, . . . , s, such that

λ0∇f (x∗) +

m−
j=1

λj ∇gj(x∗) +

s−
r=1

µr ∇hr(x∗) = 0

λj gj(x∗) = 0 for j = 1, . . . ,m
λj ≥ 0 for j = 1, . . . ,m

(λ0, λ, µ) ≠ (0, 0, 0).

(FJ)

Note that, in the FJ conditions, regularity conditions are not required to set the result.
Corollary 4.2. Let x∗ be a nondominated solution for (MOPBPf,g,h). Then, x∗ is a solution of the system of
polynomial equations (9) for some νi, λj, µr , βi, for i = 1, . . . , k, j = 1, . . . ,m, r = 1, . . . , s and ω > 0.

λ0 −

k−
i=1

νi = 0

k−
i=1

νiωi ∇fi(x) +

m−
j=1

λj∇gj(x) +

s−
r=1

µj∇hr(x) +

n−
i=1

βiei (2xi − 1) = 0

νi (ωi (fi(x) − ŷi) − γ ) = 0, i = 1, . . . , k
λj gj(x) = 0, j = 0, . . . ,m


(9)

where λj ≥ 0, for j = 1, . . . ,m, νi ≥ 0, for i = 1, . . . , k and not all simultaneously zero.
Let X FJ

E denote the set of solutions, in the x-variables, that are feasible solutions of (MOPBPf,g,h) and
solutions of system (9).

The set of nondominated solutions of our problem is a subset of X FJ
E , since every nondominated

solution is an optimal solution for some problem in the form of (9), and every solution of this single
objective problem is a solution of the FJ system.

However, dominated solutions may appear in the set of solutions of (9), so, a final elimination
process is to be performed to select only the nondominated solutions.

The steps to solve (MOPBPf,g,h) using the Chebyshev–FJ approach are summarized in Algorithm 3.

Algorithm 3: Summary of the procedure for solving MOPBP using the Chebyshev–FJ approach.
Input : f1, . . . , fk, g1, . . . gm, h1, . . . , hr ∈ R[x1, . . . , xn]
Algorithm:
Step 1 Formulate the Chebyshev scalarization of (MOPBPf,g,h). (Problem (Pω))
Step 2 Solve system (9) in the x-variables for any value of ω > 0: X FJ

E .
Step 3 Remove from X FJ

E the set of dominated solutions: XE .

Output: XE the set of nondominated solutions for Problem (MOPBPf,g,h)

Theorem 4.5. Algorithm 3 solves (MOPBPf,g,h) in a finite number of steps.
The last part of the section is devoted to showing how to solve the Chebyshev–FJ system using

Gröbner bases.
Consider the following polynomial ideal

I =


λ0 −

k−
i=1

νi,

k−
i=1

νiωi ∇fi(x) +

m−
j=1

λj∇gj(x) +

s−
r=1

µj∇hr(x) +

n−
i=1

βi ei (2xi − 1),

ν1 (ω1 (f1(x) − ŷ1) − γ ), . . . , νk (ωk (fk(x) − ŷk) − γ ), λ1 g1(x), . . . , λm gm(x)


in the polynomial ring R[x, γ , λ, ν, µ, β].
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Let us consider a lexicographical order over the monomials in R[x, γ , λ, ν, µ, β] such that x ≺

γ ≺ λ ≺ ν ≺ µ ≺ β . Then, the Gröbner basis, G, for I with this order has the following triangular
shape:

• G contains one polynomial in R[xn]: pn(xn)
• G contains one or several polynomials in R[xn−1, xn] : p1n−1(xn−1, xn), . . . , p

m1
n−1(xn−1, xn)

· · ·

• G contains one or several polynomials in R[x] : p11(x1, . . . , xn), . . . , p
mn
1 (x1, . . . , xn)

• The remainder polynomials involve variables x and at least one of γ , λ, µ, ν or β .

We are interested in finding only the values for the x-variables, so, we avoid the polynomials in
G that involve any of the other auxiliary variables. We denote by Gx the subset of G that contains
only all the polynomials in the x-variables. By the Extension Theorem, Gx is a Gröbner basis for
I ∩ R[x1, . . . , xn].

Solving the system given by Gx, we obtain as solutions, those of our FJ original system.
The following example illustrates the how the algorithm works.

Example 4.2. Consider the following biobjective problem:

min (−10x2 + 3x1x2, 2x1 + 4x2 − 6x1x2)
s.t. −4 x2 + 132 x41 − 143 x31 + 40 x1 ≤ 0

x1, x2 ∈ {0, 1, 2}.

After formulating the Chebyshev problem, the FJ system is:

β1 (3 x21 − 6x1 + 2) − 4 ν1 ω1 − ν2 ω2 − λ1 (528 x31 − 429 x21 + 40) = 0,
β2 (3 x22 − 6x2 + 2) + 10 ν1 ω1 − 4 ν2 ω2 + 4 λ1 = 0,

λ0 − ν1 − ν2 = 0,
x1(x1 − 1)(x1 − 2) = 0,
x2(x2 − 1)(x2 − 2) = 0,

λ1 (−4 x2 + 132 x41 − 143 x31 + 40 x1) = 0,
ν1 (ω1 (−10x2 + 3x1x2 + 10) − γ ) = 0,

ν2 (ω2 (2x2 + 4x2 − 6x1x2) − γ ) = 0.

Whose solutions using the convenient Gröbner basis are:

{(1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (1, 1), (0, 0), (0, 1)}.

Note that the solution (0, 2) is automatically discarded since it is not a feasible solution of the original
problem.

Now, by applying Theorem4.1, the solutions (0, 0) and (0, 1) are discarded, and then, the candidate
set of nondominated solutions is:

{(1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (1, 1)}.

Then, discarding dominated solutions we obtain the set of nondominated solutions:

{(2, 2), (1, 2)}.

Fig. 4 shows feasible region, the nondominated solutions and the level curves of Example 4.2.

Remark 4.1 (Convex Case). In the special case where both objective functions and constraints are
convex, sufficient KKT conditions canbe applied. If the feasible solution x∗ satisfies KKT conditions, and
all objective and constraint functions are convex, then x∗ is a nondominated solution. As a particular
case, this situation is applicable to linear problems.

In this case, we may choose a linear scalarization instead of the Chebyshev scalarization. With this
alternative approach, the scalarized problem is
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Fig. 4. Feasible region, the nondominated solutions and the level curves of Example 4.2.

min
k−

s=1

ts fs(x)

s.t. gj(x) ≤ 0 j = 1, . . . ,m
hr(x) = 0 r = 1, . . . , s

xi(xi − 1) = 0 i = 1, . . . , n

for t1, . . . , tk > 0.
Then, by Corollary 11.19 in Jahn (2004) applied to multiobjective binary problems, and denoting

by S the feasible region, if f (S) + Rk
+
is convex, then each x∗ is a nondominated solution if and only if

x∗ is a solution of Problem 4.1 for some t1, . . . , tk > 0.
Using both results, necessary and sufficient conditions are given for that problem and the removing

step is avoided.

Remark 4.2 (Single Objective Case). The same approach can be applied to solve single objective
problems. In this case, KKT (or FJ) conditions can be applied directly to the original problem, without
scalarizations.

5. Obtaining nondominated solutions by multiobjective optimality conditions

In this section, we address the solution of (MOPBPf,g,h) by directly applying necessary conditions
for multiobjective problems. With these conditions we do not need to scalarize the problem, as in the
above section, avoiding some steps in the process followed in the previous sections.

The following result states the Fritz–Johnnecessary optimality conditions formultiobjective binary
problems.

Theorem 5.1 (Multiobjective FJ Necessary Conditions, Theorem 3.1.1 in Miettinen, 1999). Consider the
problem:

min (f1(x), . . . , fk(x))
s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s
x ∈ {0, 1}n.

(10)

Let x∗ be a feasible solution. Suppose that fi, for i = 1, . . . , k, gj, for j = 1, . . . ,m and hr , for
r = 1, . . . , s, are continuously differentiable at x∗. If x∗ is a nondominated solution for Problem (10) then
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there exist scalars νi, for i = 1, . . . , k, λj, for j = 1, . . . ,m, µr , for r = 1, . . . , s, and βi, for i = 1 . . . , n,
such that

k−
i=1

νi∇fi(x∗) +

m−
j=1

λj ∇gj(x∗) +

s−
r=1

µr ∇hr(x∗) +

n−
i=1

βiei (2xi − 1) = 0

λj gj(x∗) = 0 for j = 1, . . . ,m
λj ≥ 0 for j = 1, . . . ,m
νi ≥ 0 for i = 1, . . . , k

(ν, λ, µ) ≠ (0, 0, 0).

(MO-FJ)

We can apply this result directly to any MOPIP problem, once it is written in the form (2). Then,
onemust solve the system given by the necessary conditions to obtain candidates to be nondominated
solutions for the original problem. For solving this system, we use lexicographical Gröbner bases as in
the above sections. We summarize the algorithm for solving the multiobjective polynomial problem
in Algorithm 4.

Algorithm4: Summary of the procedure for solvingMOPBPusing themultiobjective FJ optimality
conditions.
Input : f1, . . . , fk, g1, . . . gm, h1, . . . , hr ∈ R[x1, . . . , xn]
Algorithm:
Step 1 Solve system (MO-FJ): XMOFJ

E .
Step 2 Remove from XMOFJ

E the subset of dominated solutions: XE .

Output: XE the set of nondominated solutions for Problem (MOPBPf,g,h)

The following simple example illustrates Algorithm 4.
Example 5.1.

min (x21 + 10x2, −4x1 − x32)
s.t. 16x2 − 16x31 + 16x21 − 3x1 − 8 ≥ 0

x1, x2 ∈ {0, 1}.

Solving the problem reduces to solving the following system of polynomial equations (Theorem 5.1):

2 ν1 x1 − 4 ν2 + λ1 (2 x1 − 1) − µ1 (−3 x21 + 2 x1 − 3/16) = 0
10 ν1 − 3 ν2 x22 + λ2 (2 x2 − 1) − µ1 = 0
µ1 (x2 − x31 + x21 − (3/16) x1 − 1/2) = 0

x21 − x1 = 0
x22 − x2 = 0
λ1, λ2 ≥ 0
ν1, ν2 ≥ 0.

The solutions of the above system in the original variables, x1 and x2, are:

{x1 = 1, x2 = 1}, {x1 = 0, x2 = 1}.

Fig. 5 shows this set of nondominated solutions in the feasible region and the level curves at these
points of the problem.
Remark 5.1. In the special case where both objective functions and constraints are convex,
Theorem 5.1 gives sufficient nondominance conditions for (MOPBPf,g,h) requiring that νi > 0 (see
Theorem 3.1.8 in Miettinen (1999)).

6. Computational experiments

A series of computational experiments have been performed in order to evaluate the behavior of
the proposed solution methods. Programs have been coded in MAPLE 11 and executed in a PC with
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Fig. 5. Nondominated solutions and level curves of Example 5.1.

an Intel Core 2 Quad processor at 2× 2.50 GHz and 4 GB of RAM. The implementation has been done
in that symbolic programming language, available upon request, in order to make the access easy to
both optimizers and algebraic geometers.

We run the algorithms for three families of binary biobjective and triobjective knapsack problems:
linear, quadratic and cubic, and for a biobjective portfolio selection model. For each problem, we
obtain the set of nondominated solutions as well as the CPU times for computing the corresponding
Gröbner bases associated to the problems, and the total CPU times for obtaining the set of solutions.

We give a short description of the problems where we test the algorithms. In all cases, we use
binary variables xj, j = 1, . . . , n, where xj = 1means that the item (resp. security) j is selected for the
knapsack (resp. portfolio) problem.

1. Biobjective (linear) knapsack problem (biobj linkn): Assume that n items are given. Item j has
associated costs q1j , q

2
j for two different targets, and a unit profit aj, j = 1, . . . , n. The biobjective

knapsack problem calls for selecting the item subsets whose overall profit ensures a knapsackwith
value at least b, so as to minimize (in the nondominance sense) the overall costs. The problemmay
be formulated:

min


n−

j=1

q1j xj,
n−

j=1

q2j xj



s.t.
n−

i=1

ai xi ≥ b, x ∈ {0, 1}n.

2. Biobjective cubic knapsack problem (biobj cubkn): Assume that n items are given where item j
has an integer profit aj. In addition we are given two n×n×nmatrices P1

= (p1ijk) and P2
= (p2ijk),

where p1ijk and p2ijk are the costs for each of the targets if the combination of items i, j, k is selected
for i < j < k; and two additional n×nmatrices Q 1

= (q1ij) and Q 2
= (q2ij), where q1jj and q2ij are the

costs for the two different targets if both items i and j are selected for i < j. The biobjective cubic
knapsack problem calls for selecting the item subsets whose overall profit exceeds the purpose of
the knapsack b, so as to minimize the overall costs. The problem may be formulated:

min


n−

i=1

n−
j=i

q1ij xi xj +
n−2−
i=1

n−1−
j=i+1

n−
l=j+1

p1ijl xi xj xl,
n−

i=1

n−
j=i

q2ij xi xj +
n−2−
i=1

n−1−
j=i+1

n−
l=j+1

p2ijl xi xj xl



s.t.
n−

i=1

ai xi ≥ b, x ∈ {0, 1}n.

3. Biobjective quadratic knapsack problem (biobj qkn): This problem may be seen as a special case
of the biobjective cubic knapsack problem when there are no cost correlations between triplets.
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4. Triobjective (linear) knapsack problem (triobj linkn): Assume that n items are givenwhere item
j has an integer profit aj. In addition, we are given three vectors q1 = (q1j ), q

2
= (q2j ) and q3 = (q3j ),

where q1j , q
2
j and q3j are the costs for three different targets if j is selected. The triobjective knapsack

problem calls for selecting the item subsets whose overall profit ensures a profit for the knapsack
at least b, so as to minimize (in the nondominance sense) the overall costs. The problem is:

min


n−

j=1

q1j xj,
n−

j=1

q2j xj,
n−

j=1

q3j xj



s.t.
n−

i=1

ai xi ≥ b, x ∈ {0, 1}n.

5. Triobjective cubic knapsack problem (triobj cubkn): We are given n items where item j has an
integer profit aj. In addition, we are given three n × n × n matrices P1

= (p1ijk), P
2

= (p2ijk) and
P3

= (p3ijk), where p1ijk, p
2
ijk and p3ijk are the costs for each of the targets if the combination of items

i, j and k is selected for i < j < k; and three additional n × n matrices Q 1
= (q1ij),Q

2
= (q2ij)

and Q 3
= (q2ij), where q1jj, q

2
ij and q3ij are the costs for three different targets if both items i and j

are selected for i < j. The triobjective cubic knapsack problem calls for selecting the item subsets
whose overall profit ensures a value of b, so as to minimize the overall costs. The problem is:

min


n−

i=1

n−
j=i

q1ij xi xj +
n−2−
i=1

n−1−
j=i+1

n−
l=j+1

p1ijl xi xj xl,
n−

i=1

n−
j=i

q2ij xi xj +
n−2−
i=1

n−1−
j=i+1

n−
l=j+1

p2ijl xi xj xl,

n−
i=1

n−
j=i

q3ij xi xj +
n−2−
i=1

n−1−
j=i+1

n−
l=j+1

p3ijl xi xj xl



s.t.
n−

i=1

ai xi ≥ b, x ∈ {0, 1}n.

6. Triobjective quadratic knapsack problem (triobj qkn): This problemmay be seen as a special case
of the triobjective cubic knapsack problem when there are no cost correlations between triplets.

7. Biobjective portfolio selection (portfolio): Consider a market with n securities. An investor with
initial wealth b seeks to improve his wealth status by investing it into these n risky securities. Let
Xi be the random return per one lot of the ith security (i = 1, . . . , n). The mean, µi = E[Xi], and
the covariance, σij = Cov(Xi, Xj), i, j = 1, . . . , n, of the returns are assumed to be known. Let xi
be a decision variable that takes value 1 if the decision-maker invests in the ith security and 0
otherwise. Denote the decision vector by x = (x1, . . . , xn). Then, the random return for a inversion
vector x from the securities is

∑
i=1 xiXi and the mean and variance of this random variable are

E[
∑

i=1 xiXi] =

n−
i=1

µixi and Var(
∑

i=1 xiXi) =

n−
i=1

n−
j=1

xi xj σij.

Let ai be the current price of the ith security. Then, if an investor looks for minimizing his
investment risk and simultaneously maximizing the expected return with that investment, the
problem can be formulated as:

min


Var


n−

i=1

xi Xi


, −E


n−

i=1

xi Xi


s.t.

n−
i=1

ai xi ≤ b, x ∈ {0, 1}n

 ⇒

min


n−

i=1

σij xi xj, −
n−

i=1

µi xi


s.t.

n−
i=1

ai xi ≤ b, x ∈ {0, 1}n

.

For each of the above 7 classes of problems, we consider instances randomly generated as follows: ai
is randomly drawn in [−10, 10] and the coefficients of the objective functions, qkij, p

k
ijl, σij and µi are

in the range [−10, 10]. Once the constraint vector, (a1, . . . , an), is generated, the right hand side, b,
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Table 2
Information about all the algorithms.

Algorithm #var #gen maxdeg

alg1 2n + k + m + s n + k + m + s max{2, deg(f ), deg(g), deg(h)}
kkt 2n + 2k + m + s + 1 2n + k + m + s + 1 max{deg(f ) + 2, deg(g) + 1, deg(h)}
nr 2n + 2k + m + s + 1 2n + m + s max{deg(f ) + 1, deg(g), deg(h)}
fj 2n + 2k + m + s + 2 2n + k + m + s + 1 max{deg(f ) + 2, deg(g) + 1, deg(h)}
mojf 2n + k + m + s 2n + m + s max{deg(f ), deg(g) + 1, deg(h)}

is randomly generated in [1, |
∑n

i=1 ai|]. For each type of instances and each value of n in [2, 13] we
generated 5 instances.

Tables 1 and 3 contain a summary of the average results over the different instances generated for
the above problems. Each algorithm is labeled conveniently: alg1 corresponds to Algorithm 1, kkt is
Algorithm 2, kkt sl is Algorithm 2 where the inequality is transformed to an equation using a slack
variable, fj is Algorithm 3, fj sl is Algorithm 3 where the inequality is transformed to an equation
using a slack variable and mofj stands for Algorithm 4. For each of these algorithms we present the
CPU time for computing the corresponding Gröbner basis (tgb), the total CPU time for obtaining the
set of nondominated solutions (ttot), the number of nondominated solutions (#nd) and the number
of variables involved in the resolution of the problem (#vars).

From those tables, the reader may note that Algorithm 1 is faster than the others for the smallest
instances, although the CPU times for this algorithm increase faster than those for the others and it
is not able to obtain solutions when the size of the problem is around 12 variables. The algorithms
based on Chebyshev scalarization (kkt, kkt sl, fj and fj sl) are better than alg1 for the largest
instances. The differences between these four methods are meaningful, but the algorithms based on
the KKT conditions are, in almost all the instances, faster than those based on the FJ conditions. Note
that considering slack variables to avoid the inequality constraint is not better, since the CPU times
when the slack variable is considered are larger. Finally, the best algorithm, in CPU time, is mofj since
except for the small instances it is the fastest and it was able to solve larger instances.

One may think that the last step of our methods, i.e. removing dominated solutions, should be
more time consuming in alg1 than in the remaining methods since alg1 does not use optimality
conditions. However, from our experiments this conclusion is not clearly supported. Actually,
although this process is time consuming, when the dimension of the problem increases this time is
rather small compared with the effort necessary to obtain the Gröbner bases.

Table 2 shows some information about each of the presented algorithms. For a multiobjective
problem with n variables, m polynomial inequality constraints given by g = (g1, . . . , gm), s
polynomial equality constraints given by h = (h1, . . . , hs) and k objectives functions given by
f = (f1, . . . , fk), Table 3 shows the number of variables (#var), the number of generators (#gen)
and the maximal degrees (maxdeg) of the initial polynomial ideals related to each of the algorithms.
These numbers inform us about the theoretical complexity of the algorithms. Here, by theoretical
complexity we mean the complexity of computing the lexicographic Gröbner basis, that basically,
depends of the number of variables, the number of equations in the system and the maximal degree
of the polynomials involved in the system (some complexity bounds for this computation involving
#var, #gen and maxdeg can be found in Dubé et al. (1986)).

From the above table the reader may note that both alg1 and mojf have the same number of
variables in any case, but the number of initial generators for alg1 is, in general, smaller than the
same number formojf, since the number of objectives is usually smaller than the number of variables.
Furthermore, maximal degrees are smaller in alg1 than in mojf . However, in practice, mojf is faster
than alg1 since using optimality conditions helps in identifying nondominated solutions.

7. Conclusions

In this paper we present several methodologies, based on the use of Gröbner bases, to solve
multiobjective polynomial integer problems based on solving systems of polynomial equations
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derived from optimality conditions of different transformations of the original problem. The use of
Gröbner bases is justified as a instrumental tool to solve the above mentioned systems of equations,
although alternative methods for solving those systems would also lead to the same solutions of the
multiobjective problem.

The first algorithm enumerates the images, under the objective functions, of the feasible values
of the problem, and then, selects the minimal elements (with respect to the componentwise order)
among all of them. The last three algorithms use necessary nondominance conditions that transform
the original problem to a system of polynomial equations and inequalities. These conditions are,
in general, necessary but not sufficient, and then by using them we may obtain solutions that are
not nondominated. An additional test is used to discard these solutions. In general, the use of these
methods cannot avoid the full enumeration of feasible solutions in the worst case since it is easy to
construct instanceswhere any feasible solution is nondominated. Therefore, aworst case analysis lead
us to the complete enumeration of the feasible region (and then similar to a brute force approach).
Nevertheless, in practice, these systems of equations reduce significantly the complete enumeration.

In addition, the obtained polynomial systems have finite number of solutions in the original
variables, which induces zero-dimensional projected ideals and therefore simplifies the computation
of Gröbner bases. Actually, it is known that for several classes of functions involved in the problem,
the solutions of systems (6), (7) and (9) are directly the sets of nondominated solutions. Also, in those
cases where the nondominance conditions are also sufficient, such as for instance under convexity
hypothesis, the problem reduce to solving the system of polynomial equations and no additional tests
are required.

Furthermore, from amethodological point of view this paper proposes, for the first time, a general
methodology for exactly solving multiobjective polynomial integer problems. Scanning the literature
in the field, there are only heuristic algorithms for some biobjective versions of specific problems, as
quadratic or cubic knapsack or assignments problems (see Jahn (2004) for further details and related
problems). Our results can be also used as certificates of nondominance in the above mentioned
heuristics which will improve the quality of the solutions provided.

We have implemented our algorithms in MAPLE, using the standard package Groebner for
obtaining the Gröbner bases, to compare the performance of the different approaches and even with
our simple implementation we were able to solve problems up to 13 integer variables. Of course,
different implementations using more sophisticated tools for the Gröbner basis computation will
enlarge the size of the solved instances.

Finally, this paper also gives a first analysis of the theoretical and practical complexities of the
algorithms. Note that theoretical complexity refers to the complexity of computing the lexicographic
Gröbner basis. Our Table 2 shows these ‘‘indices’’ of the complexity of the four algorithms.Moreover, in
order to analyze the practical complexity of the algorithms,we ran several biobjective and triobjective
problems from four different families of well-known problems. From the computational tests we can
conclude that Algorithm 4, the one based on the multiobjective Fritz–John nondominance conditions,
is the one that is capable of solving largest instances and in less CPU time. That seems to be
explained by the smaller number of indeterminates involved in the polynomial transformation of
the multiobjective problem. The main drawback of Algorithm 1 is that it needs to select the minimal
elements among the images by the objective functions of all the feasible solutions of the problem,
which seems to consume a lot of CPU time. On the other hand, the main disadvantage of Algorithms
2 and 3 is the instrumental use of the Chebyshev scalarization. This scalarization adds an additional
indeterminate γ , and k extra polynomial equations to the system which increases its difficulty.
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